
HackRF

Great Scott Gadgets

May 02, 2024

USER DOCUMENTATION

1 Getting Help 1

2 FAQ 3
2.1 What is the Transmit Power of HackRF? . 3
2.2 What is the Receive Power of HackRF? . 3
2.3 What is the minimum signal power level that can be detected by HackRF? 4
2.4 Is HackRF full-duplex? . 4
2.5 Why isn’t HackRF One full-duplex? . 4
2.6 How could the HackRF One design be changed to make it full-duplex? 4
2.7 What is the big spike in the center of my received spectrum? . 5
2.8 How do I deal with the big spike in the middle of my spectrum? . 5
2.9 What gain controls are provided by HackRF? . 6
2.10 Why is the RF gain setting restricted to two values? . 6
2.11 Why are the LEDs on HackRF different colours? . 6
2.12 Where can I purchase HackRF? . 6

3 HackRF Community Projects and Mentions 7
3.1 Retired Projects . 7

4 HackRF One 9
4.1 Features . 10

5 Minimum Host System Requirements for HackRF 11

6 List of Hardware Revisions 13
6.1 HackRF One r1–r4 . 13
6.2 HackRF One r5 . 13
6.3 HackRF One r6 . 13
6.4 HackRF One r7 . 13
6.5 HackRF One r8 . 13
6.6 HackRF One r9 . 14
6.7 HackRF One r10 . 14
6.8 Hardware Revision Identification . 14

7 Hardware Components 15
7.1 Block Diagrams . 16

8 LEDs 19

9 Buttons 21

i

10 Connectors 23

11 External Clock Interface (CLKIN and CLKOUT) 25

12 Expansion Interface 27
12.1 P9 Baseband . 27
12.2 P20 GPIO . 27
12.3 P22 I2S . 28
12.4 P28 SD . 29

13 Hardware Triggering 31
13.1 Clock Synchronization . 31
13.2 Requirements . 31
13.3 Open Your HackRF One . 31
13.4 Identify the Trigger Pins . 32
13.5 Connect the Trigger Output to the Trigger Input . 32
13.6 Usage . 32
13.7 Additional Devices . 32
13.8 References . 33

14 Enclosure Options 35

15 USB Cables 37
15.1 Why isn’t my HackRF One detectable after I plug it into my computer? 37

16 RF Shield Installation Instructions 39

17 Jawbreaker 43
17.1 Features . 43
17.2 Hardware Documentation . 44
17.3 Transmit Power . 44
17.4 SMA, not RP-SMA . 44
17.5 Recommended PCB and Antenna Changes . 44
17.6 Expansion Interface . 45
17.7 Differences between Jawbreaker and HackRF One . 49

18 Updating Firmware 51
18.1 Updating the SPI Flash Firmware . 51
18.2 Only if Necessary: Recovering the SPI Flash Firmware . 51
18.3 Only if Necessary: DFU Boot . 52
18.4 Obtaining DFU-Util . 52
18.5 Updating the CPLD . 52

19 Firmware Development Setup 55

20 LPC43xx Debugging 57
20.1 Black Magic Probe . 57
20.2 LPC-Link . 57
20.3 ST-LINK/V2 . 57
20.4 Run ARM GDB . 59

21 LPC43xx SGPIO Configuration 61
21.1 Why not use GPDMA to transfer samples through SGPIO? . 61

22 Installing HackRF Software 63
22.1 Install Using Package Managers . 63

ii

22.2 Installing From Source . 64

23 HackRF Tools 67
23.1 hackrf_sweep . 67

24 Third-Party Software Compatible With HackRF 69
24.1 Software That Has Direct Support For HackRF . 69
24.2 Software That Can Use Data From HackRF . 70
24.3 Troubleshooting Recommendations . 70

25 Sampling Rate and Baseband Filters 71

26 Setting Gain Controls for RX 73

27 Virtual Machines 75

28 Opera Cake 77

29 Frequently Asked Questions 79
29.1 Why the name ‘Opera Cake’? . 79
29.2 When was Opera Cake first for sale? . 79

30 Hardware 81
30.1 Banks . 81
30.2 Ports . 81
30.3 LEDs . 81

31 Board Addressing 83

32 Port Configurations 85

33 Modes of Operation 87
33.1 Manual Mode . 87
33.2 Frequency Mode . 87
33.3 Time Mode . 88

iii

iv

CHAPTER

ONE

GETTING HELP

Before asking for help with HackRF, check to see if your question is answered in this documentation, listed in the FAQ,
or addressed in the HackRF GitHub repository issues.

For assistance with HackRF general use or development, please look at the issues on the GitHub project. This is the
preferred place to ask questions so that others may locate the answer to your question in the future.

We invite you to join our community discussions on Discord. Note that while technical support requests are welcome
here, we do not have support staff on duty at all times. Be sure to also submit an issue on GitHub if you’ve found a bug
or if you want to ensure that your request will be tracked and not overlooked.

If you wish to see past discussions and questions about HackRF, you may also view the mailing list archives.

1

https://github.com/greatscottgadgets/hackrf/issues
https://github.com/greatscottgadgets/hackrf/issues
https://discord.gg/rsfMw3rsU8
https://pairlist9.pair.net/pipermail/hackrf-dev/

HackRF

2 Chapter 1. Getting Help

CHAPTER

TWO

FAQ

2.1 What is the Transmit Power of HackRF?

HackRF One’s absolute maximum TX power varies by operating frequency:

• 1 MHz to 10 MHz: 5 dBm to 15 dBm, generally increasing as frequency increases (see this blog post)

• 10 MHz to 2170 MHz: 5 dBm to 15 dBm, generally decreasing as frequency increases

• 2170 MHz to 2740 MHz: 13 dBm to 15 dBm

• 2740 MHz to 4000 MHz: 0 dBm to 5 dBm, decreasing as frequency increases

• 4000 MHz to 6000 MHz: -10 dBm to 0 dBm, generally decreasing as frequency increases

Through most of the frequency range up to 4 GHz, the maximum TX power is between 0 and 10 dBm. The frequency
range with best performance is 2170 MHz to 2740 MHz.

Overall, the output power is enough to perform over-the-air experiments at close range or to drive an external amplifier.
If you connect an external amplifier, you should also use an external bandpass filter for your operating frequency.

Before you transmit, know your laws. HackRF One has not been tested for compliance with regulations governing
transmission of radio signals. You are responsible for using your HackRF One legally.

2.2 What is the Receive Power of HackRF?

The maximum RX power of HackRF One is -5 dBm. Exceeding -5 dBm can result in permanent damage!

In theory, HackRF One can safely accept up to 10 dBm with the front-end RX amplifier disabled. However, a simple
software or user error could enable the amplifier, resulting in permanent damage. It is better to use an external attenuator
than to risk damage.

3

https://greatscottgadgets.com/2015/05-15-hackrf-one-at-1-mhz/

HackRF

2.3 What is the minimum signal power level that can be detected by
HackRF?

This isn’t a question that can be answered for a general purpose SDR platform such as HackRF. Any answer would be
very specific to a particular application. For example, an answerable question might be: What is the minimum power
level in dBm of modulation M at frequency F that can be detected by HackRF One with software S under configuration
C at a bit error rate of no more than E%? Changing any of those variables (M, F, S, C, or E) would change the answer
to the question. Even a seemingly minor software update might result in a significantly different answer. To learn the
exact answer for a specific application, you would have to measure it yourself.

HackRF’s concrete specifications include operating frequency range, maximum sample rate, and dynamic range in
bits. These specifications can be used to roughly determine the suitability of HackRF for a given application. Testing
is required to finely measure performance in an application. Performance can typically be enhanced significantly by
selecting an appropriate antenna, external amplifier, and/or external filter for the application.

2.4 Is HackRF full-duplex?

HackRF One is a half-duplex transceiver. This means that it can transmit or receive but not both at the same time.

2.5 Why isn’t HackRF One full-duplex?

HackRF One is designed to support the widest possible range of SDR applications in a single, low cost, portable device.
Many applications do not require full-duplex operation. Full-duplex support would have made HackRF larger and more
expensive, and it would have required an external power supply. Since full-duplex needs can be met by simply using a
second HackRF One, it made sense to keep the device small, portable, and low cost for everyone who does not require
full-duplex operation.

2.6 How could the HackRF One design be changed to make it full-
duplex?

The HackRF One hardware design is actually full-duplex (at lower sample rates) from the USB connection through the
ADC/DAC. The RF section is the only part of the design that cannot support full-duplex operation. The easiest way
to make HackRF One full-duplex would be to create an add-on board that duplicates the RF section and also provides
an external power input (from a wall wart, for example) for the additional power required. This would also require
software effort; the firmware, CPLD, libhackrf, and other host software would all need work to support full-duplex
operation.

If you were to try to redesign the RF section on HackRF One to support full-duplex, the main thing to focus on would
be the MAX2837 (intermediate frequency transceiver). This part is half-duplex, so you would either need two of them
or you would have to redesign the RF section to use something other than the MAX2837, likely resulting in a radically
different design. If you used two MAX2837s you might be able to use one RFFC5071 instead of two RFFC5072s.

4 Chapter 2. FAQ

HackRF

2.7 What is the big spike in the center of my received spectrum?

If you see a large spike in the center of your FFT display regardless of the frequenecy you are tuned to, you are seeing
a DC offset (or component or bias). The term “DC” comes from “Direct Current” in electronics. It is the unchanging
aspect of a signal as opposed to the “alternating” part of the signal (AC) that changes over time. Take, for example, the
signal represented by the digital sequence:

-2, -1, 1, 6, 8, 9, 8, 6, 1, -1, -2, -1, 1, 6, 8, 9, 8, 6, 1, -1, -2, -1, 1, 6, 8, 9, 8,␣
→˓6, 1, -1

This periodic signal contains a strong sinusoidal component spanning from -2 to 9. If you were to plot the spectrum
of this signal, you would see one spike at the frequency of this sinusoid and a second spike at 0 Hz (DC). If the signal
spanned from values -2 to 2 (centered around zero), there would be no DC offset. Since it is centered around 3.5 (the
number midway between -2 and 9), there is a DC component.

Samples produced by HackRF are measurements of radio waveforms, but the measurement method is prone to a DC
bias introduced by HackRF. It’s an artifact of the measurement system, not an indication of a received radio signal. DC
offset is not unique to HackRF; it is common to all quadrature sampling systems.

There was a bug in the HackRF firmware (through release 2013.06.1) that made the DC offset worse than it should
have been. In the worst cases, certain Jawbreakers experienced a DC offset that drifted to a great extreme over several
seconds of operation. This bug has been fixed. The fix reduces DC offset but does not do away with it entirely. It is
something you have to live with when using any quadrature sampling system like HackRF.

A high DC offset is also one of a few symptoms that can be caused by a software version mismatch. A common problem
is that people run an old version of gr-osmosdr with newer firmware.

2.8 How do I deal with the big spike in the middle of my spectrum?

Start by reading our FAQ Response on the DC Spike. After that, there are a few options:

1. Ignore it. For many applications it isn’t a problem. You’ll learn to ignore it.

2. Avoid it. The best way to handle DC offset for most applications is to use offset tuning; instead of tuning to your
exact frequency of interest, tune to a nearby frequency so that the entire signal you are interested in is shifted
away from 0 Hz but still within the received bandwidth. If your algorithm works best with your signal centered
at 0 Hz (many do), you can shift the frequency in the digital domain, moving your signal of interest to 0 Hz and
your DC offset away from 0 Hz. HackRF’s high maximum sampling rate can be a big help as it allows you to
use offset tuning even for relatively wideband signals.

3. Correct it. There are various ways of removing the DC offset in software. However, these techniques may degrade
parts of the signal that are close to 0 Hz. It may look better, but that doesn’t necessarily mean that it is better from
the standpoint of a demodulator algorithm, for example. Still, correcting the DC offset is often a good choice.

—

2.7. What is the big spike in the center of my received spectrum? 5

HackRF

2.9 What gain controls are provided by HackRF?

HackRF (both Jawbreaker and One) provides three different analog gain controls on RX and two on TX.

The three RX gain controls are at these stages:

• RF (“amp”, 0 or ~11 dB)

• IF (“lna”, 0 to 40 dB in 8 dB steps)

• baseband (“vga”, 0 to 62 dB in 2 dB steps)

The two TX gain controls are at these stages:

• RF (0 or ~11 dB)

• IF (0 to 47 dB in 1 dB steps)

Note: in some documents, the RF gain was erroneously quoted to be 14 dB. The confusion was based on the fact that the
MGA-81563 amplifier is advertised as a “14 dBm” amplifier, but that specifies its output power, not its amplification.
See Martin Ling’s comment on issue #1059 for some details!

2.10 Why is the RF gain setting restricted to two values?

HackRF has two RF amplifiers close to the antenna port, one for TX and one for RX. These amplifiers have two settings:
on or off. In the off state, the amps are completely bypassed. They nominally provide around 11 dB of gain when on,
but the actual amount of gain varies by frequency. In general, expect less gain at higher frequencies. For fine control
of gain, use the IF and/or baseband gain options.

2.11 Why are the LEDs on HackRF different colours?

Each LED is a single color. There are no multi-colored LEDs on HackRF One. Adjacent LEDs are different colors in
order to make them easier to distinguish from one another. The colors do not mean anything.

2.12 Where can I purchase HackRF?

HackRF is designed and manufactured by Great Scott Gadgets. We do not sell low volumes of HackRFs to people
individually; instead we have agreements with specific resellers. Please see our reseller list on the Great Scott Gadgets
website for availability: http://greatscottgadgets.com/hackrf/.

HackRF is open source hardware, so you can also build your own.

6 Chapter 2. FAQ

https://github.com/greatscottgadgets/hackrf/issues/1059#issuecomment-1060038293
http://greatscottgadgets.com/hackrf/

CHAPTER

THREE

HACKRF COMMUNITY PROJECTS AND MENTIONS

Have you done something cool with HackRF or mentioned HackRF in one of your presentations? Let us know and we
might post a link here!

• HackRF vs. Tesla Model S (Sam Edwards)

• Jawbreaker/VFD spectrum analyzer (Jared Boone)

• LEGO car (Michael Ossmann)

• wireless microphones (Jared Boone)

• Tesla Charging Port Opener (Radoslav Gerganov)

• Hacking my smart tooth brush (Cyrill Künzi)

3.1 Retired Projects

• Automotive Remote Keyless Entry Systems (Mike Kershaw)

• Decoding Pocsag Pagers With The HackRF (BinaryRF)

• Sniffing GSM with HackRF (BinaryRF)

7

https://www.youtube.com/watch?v=575TcQJJWok
http://www.sharebrained.com/2013/05/21/maker-faire-radio-spectrum-analyzer/
http://ossmann.blogspot.com/2013/06/hackrf-lego-car.html
http://www.sharebrained.com/2013/06/15/wireless-microphones-and-hackrf/
https://github.com/rgerganov/tesla-opener
https://kuenzi.dev/toothbrush/

HackRF

8 Chapter 3. HackRF Community Projects and Mentions

CHAPTER

FOUR

HACKRF ONE

HackRF One is the current hardware platform for the HackRF project. It is a Software Defined Radio peripheral capable
of transmission or reception of radio signals from 1 MHz to 6 GHz. Designed to enable test and development of modern
and next generation radio technologies, HackRF One is an open source hardware platform that can be used as a USB
peripheral or programmed for stand-alone operation.

9

HackRF

4.1 Features

• half-duplex transceiver

• operating freq: 1 MHz to 6 GHz

• supported sample rates: 2 Msps to 20 Msps (quadrature)

• resolution: 8 bits

• interface: High Speed USB (with USB Micro-B connector)

• power supply: USB bus power

• software-controlled antenna port power (max 50 mA at 3.0 to 3.3 V)

• SMA female antenna connector (50 ohms)

• SMA female clock input and output for synchronization

• convenient buttons for programming

• pin headers for expansion

• portable

• open source

10 Chapter 4. HackRF One

CHAPTER

FIVE

MINIMUM HOST SYSTEM REQUIREMENTS FOR HACKRF

HackRF requires you to supply 500 mA at 5 V DC to your HackRF via the USB port. If your host computer has
difficulty meeting this requirement, you may need to use a powered USB hub.

There is no specific minimum CPU requirement for the host computer when using a HackRF, but SDR is generally a
CPU-intensive application. If you have a slower CPU, you may be unable to run certain SDR software or you may only
be able to operate at lower sample rates.

Most users will want to stream data to or from the HackRF at high speeds. This requires that the host computer supports
Hi-Speed USB. Some Hi-Speed USB hosts are better than others, and you may have multiple host controllers on your
computer. If you have difficulty operating your HackRF at high sample rates (10 Msps to 20 Msps), try using a different
USB port on your computer. If possible, arrange things so that the HackRF is the only device on the bus.

11

HackRF

12 Chapter 5. Minimum Host System Requirements for HackRF

CHAPTER

SIX

LIST OF HARDWARE REVISIONS

6.1 HackRF One r1–r4

The first revision of HackRF One shipped by Great Scott Gadgets starting in 2014 was labeled r1. Subsequent manu-
facturing runs incremented the revision number up to r4 without modification to the hardware design. Manufacturing
years: 2014–2020

6.2 HackRF One r5

This experimental revision has not been manufactured.

6.3 HackRF One r6

SKY13350 RF switches were replaced by SKY13453. Although the SKY13453 uses simplified control logic, it did
not require a firmware modification. Hardware revision detection pin straps were added. Manufacturing year: 2020

6.4 HackRF One r7

SKY13453 RF switches were reverted to SKY13350. USB VBUS detection resistor values were updated. Manufac-
turing year: 2021

6.5 HackRF One r8

SKY13350 RF switches were replaced by SKY13453. Manufacturing years: 2021–2022

13

HackRF

6.6 HackRF One r9

MAX2837 was replaced by MAX2839. Si5351C was replaced by Si5351A with additional clock distribution. A series
diode was added to the antenna port power supply. Manufacturing year: 2023

6.7 HackRF One r10

This revision is based on r8, reverting most of the changes made in r9. A series diode was added to the antenna port
power supply. Manufacturing year: 2024

6.8 Hardware Revision Identification

HackRF Ones manufactured by Great Scott Gadgets have the revision number printed on the PCB top silkscreen layer
near the MAX5864 (U18).

Starting with HackRF One r6, hardware revisions are detected by firmware and reported by hackrf_info.

14 Chapter 6. List of Hardware Revisions

CHAPTER

SEVEN

HARDWARE COMPONENTS

Major parts used in HackRF One:

• MAX2837 2.3 to 2.7 GHz transceiver

– Datasheet

• MAX2839 2.3 to 2.7 GHz transceiver

– Datasheet

– substitution for MAX2837.

• MAX5864 ADC/DAC

– Datasheet

• Si5351 clock generator

– AN619: Manually Generating an Si5351 Register Map

– Datasheet - see AN619 for the complete register map.

– Other Documentation - includes application notes, user guides, and white papers.

• CoolRunner-II CPLD

• LPC43xx ARM Cortex-M4 microcontroller

– User Manual

– Datasheet

– Other Documentation (LPC4330FBD144) - includes errata and application notes.

– ARM-standard JTAG/SWD connector pinout

– BSDL file for the LPC43xx (For boundary scan)

• RFFC5072 mixer/synthesizer

– Datasheet

– Other Documentation ; click “Technical Documents” - includes programming guides and application
notes.

• W25Q80BV 8M-bit Flash

15

https://www.analog.com/en/products/max2837.html
https://www.analog.com/media/en/technical-documentation/data-sheets/max2837.pdf
https://www.analog.com/en/products/max2839.html
https://www.analog.com/media/en/technical-documentation/data-sheets/max2839.pdf
https://www.analog.com/en/products/max5864.html
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX5864.pdf
http://www.silabs.com/products/clocksoscillators/clock-generator/Pages/lvcmos-clocks-5-outputs.aspx
http://www.silabs.com/Support%20Documents/TechnicalDocs/AN619.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/Si5351.pdf
http://www.silabs.com/products/clocksoscillators/clock-generators-and-buffers/Pages/clock+vcxo.aspx
http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/lpc-arm-cortex-m-mcus/lpc-dual-core-cortex-m0-m4f/lpc4300:MC_1403790133078
http://www.nxp.com/documents/user_manual/UM10503.pdf
http://www.nxp.com/documents/data_sheet/LPC4350_30_20_10.pdf
http://www.nxp.com/products/microcontrollers/cortex_m4/lpc4300/LPC4330FBD144.html#documentation
http://www.keil.com/support/man/docs/ulink2/ulink2_hw_connectors.htm
http://www.lpcware.com/system/files/LPC18xx_43xx%20BSDL%20files%2020121127_0.zip
http://www.rfmd.com/store/rffc5072-1.html
http://www.rfmd.com/CS/Documents/RFFC5071_2DS.pdf
http://www.rfmd.com/store/rffc5072-1.html
https://www.winbond.com/resource-files/w25q80bv%20revk%2020151203.pdf

HackRF

7.1 Block Diagrams

7.1.1 HackRF One r1-r8 Block Diagram

16 Chapter 7. Hardware Components

HackRF

7.1.2 HackRF One r9 Block Diagram

7.1. Block Diagrams 17

HackRF

18 Chapter 7. Hardware Components

CHAPTER

EIGHT

LEDS

When HackRF One is plugged in to a USB host, four LEDs should turn on: 3V3, 1V8, RF, and USB. The 3V3 LED
indicates that the primary internal power supply is working properly. The 1V8 and RF LEDs indicate that firmware
is running and has switched on additional internal power supplies. The USB LED indicates that the HackRF One is
communicating with the host over USB.

The RX and TX LEDs indicate that a receive or transmit operation is currently in progress.

19

HackRF

20 Chapter 8. LEDs

CHAPTER

NINE

BUTTONS

The RESET button resets the microcontroller. This is a reboot that should result in a USB re-enumeration.

The DFU button invokes a USB DFU bootloader located in the microcontroller’s ROM. This bootloader makes it
possible to unbrick a HackRF One with damaged firmware because the ROM cannot be overwritten.

The DFU button only invokes the bootloader during reset. This means that it can be used for other functions by custom
firmware.

To invoke DFU mode: Press and hold the DFU button. While holding the DFU button, reset the HackRF One either
by pressing and releasing the RESET button or by powering on the HackRF One. Release the DFU button.

21

HackRF

22 Chapter 9. Buttons

CHAPTER

TEN

CONNECTORS

The connectors on HackRF One are SMA.

Note: SMA connectors and RP-SMA connectors are visually very similar. If you connect an RP-SMA antenna to
HackRF One, it will seem to connect snugly but won’t function at all because neither the male nor female side has a
center pin. RP-SMA connectors are most common on 2.4 GHz antennas and are popular on Wi-Fi equipment. Adapters
are available.

23

HackRF

24 Chapter 10. Connectors

CHAPTER

ELEVEN

EXTERNAL CLOCK INTERFACE (CLKIN AND CLKOUT)

HackRF One produces a 10 MHz clock signal on CLKOUT. The signal is a 3.3 V, 10 MHz square wave intended for a
high impedance load.

The CLKIN port on HackRF One is a high impedance input that expects 3.3 V square wave at 10 MHz. Do not exceed
3.3 V or drop below 0 V on this input. Do not connect a clock signal at a frequency other than 10 MHz (unless you
modify the firmware to support this). You may directly connect the CLKOUT port of one HackRF One to the CLKIN
port of another HackRF One.

HackRF One uses CLKIN instead of the internal crystal when a clock signal is detected on CLKIN. The switch to or
from CLKIN only happens when a transmit or receive operation begins.

To verify that a signal has been detected on CLKIN, use hackrf_clock -i. The expected output with a clock detected
is CLKIN status: clock signal detected. The expected output with no clock detected is CLKIN status: no clock signal
detected.

To activate CLKOUT, use hackrf_clock -o 1. To switch it off, use hackrf_clock -o 0.

25

HackRF

26 Chapter 11. External Clock Interface (CLKIN and CLKOUT)

CHAPTER

TWELVE

EXPANSION INTERFACE

The HackRF One expansion interface consists of headers P9, P20, P22, and P28. These four headers are installed on
the commercial HackRF One from Great Scott Gadgets.

12.1 P9 Baseband

A direct analog interface to the high speed dual ADC and dual DAC.

Pin Function
1 GND
2 GND
3 GND
4 RXBBQ-
5 RXBBI-
6 RXBBQ+
7 RXBBI+
8 GND
9 GND
10 TXBBI-
11 TXBBQ+
12 TXBBI+
13 TXBBQ-
14 GND
15 GND
16 GND

12.2 P20 GPIO

Providing access to GPIO, ADC, RTC, and power.

27

HackRF

Pin Function
1 VBAT
2 RTC_ALARM
3 VCC
4 WAKEUP
5 GPIO3_8
6 GPIO3_0
7 GPIO3_10
8 GPIO3_11
9 GPIO3_12
10 GPIO3_13
11 GPIO3_14
12 GPIO3_15
13 GND
14 ADC0_6
15 GND
16 ADC0_2
17 VBUSCTRL
18 ADC0_5
19 GND
20 ADC0_0
21 VBUS
22 VIN

12.3 P22 I2S

I2S, SPI, I2C, UART, GPIO, and clocks.

28 Chapter 12. Expansion Interface

HackRF

Pin Function
1 CLKOUT
2 CLKIN
3 RESET
4 GND
5 I2C1_SCL
6 I2C1_SDA
7 SPIFI_MISO
8 SPIFI_SCK
9 SPIFI_MOSI
10 GND
11 VCC
12 I2S0_RX_SCK
13 I2S_RX_SDA
14 I2S0_RX_MCLK
15 I2S0_RX_WS
16 I2S0_TX_SCK
17 I2S0_TX_MCLK
18 GND
19 U0_RXD
20 U0_TXD
21 P2_9
22 P2_13
23 P2_8
24 SDA
25 CLK6
26 SCL

12.4 P28 SD

SDIO, GPIO, clocks, and CPLD.

12.4. P28 SD 29

HackRF

Pin Function
1 VCC
2 GND
3 SD_CD
4 SD_DAT3
5 SD_DAT2
6 SD_DAT1
7 SD_DAT0
8 SD_VOLT0
9 SD_CMD
10 SD_POW
11 SD_CLK
12 GND
13 GCK2
14 GCK1
15 B1AUX14 (trigger output)
16 B1AUX13 (trigger input)
17 CPLD_TCK
18 BANK2F3M2
19 CPLD_TDI
20 BANK2F3M6
21 BANK2F3M12
22 BANK2F3M4

Additional unpopulated headers and test points are available for test and development, but they may be incompatible
with some enclosure or expansion options.

Refer to the schematics and component documentation for more information.

30 Chapter 12. Expansion Interface

CHAPTER

THIRTEEN

HARDWARE TRIGGERING

HackRF One transmit and receive operations can be synchronized with another HackRF One or with other external
equipment by using the trigger input and output on pin header P28. Triggering provides time synchronization with
error of less than one sample period.

13.1 Clock Synchronization

When triggering one HackRF One from another, it is often desirable to first ensure that the two devices share a common
frequency reference. This has an added benefit of grounding the HackRFs to each other, eliminating one of the wires
required for triggering. See External Clock Interface for instructions.

Either HackRF One may serve as the clock source for the other regardless of which is providing the trigger output.

13.2 Requirements

To connect two HackRF Ones for triggering you will need:

• a male-to-male jumper wire for 0.1” pin headers

• an SMA cable for clock synchronization or a second jumper wire

13.3 Open Your HackRF One

If your HackRF Ones are not bare boards, you will need to open up their cases to access the pin headers on the HackRF
Ones. Each HackRF One case has small plastic clips holding it together. These clips may be damaged when the case is
opened, but typically the case can still be used after such damage. Please follow the instructions in this video by Jared
Boone to open your HackRF One cases.

31

https://www.youtube.com/watch?v=zuXJtpTSEJM
https://twitter.com/sharebrained
https://twitter.com/sharebrained

HackRF

13.4 Identify the Trigger Pins

HackRF One has four normally-populated pin headers, three of which are arranged in a ‘C’ shape. On the circuit board
these are marked P28, P22, and P20. P28 is the header nearest to the center of the board. Locate pins 15 (trigger output)
and 16 (trigger input) on header P28.

13.5 Connect the Trigger Output to the Trigger Input

First ensure that the two devices share a common ground. This may be accomplished by connecting one’s CLKIN to
the other’s CLKOUT as recommended above. Alternatively, connect a jumper wire from P28 pin 2 on one HackRF
One to P28 pin 2 on the other HackRF One.

Next use a jumper wire to connect P28 pin 15 (trigger output) on one HackRF One to P28 pin 16 (trigger input) on the
other HackRF One.

13.6 Usage

Use hackrf_info to discover the serial numbers of both HackRF Ones. Using the serial number of the HackRF One
to be triggered, use hackrf_transfer -H to set up a triggered operation. For example:

• hackrf_transfer -H -d <serial number> -a 0 -l 32 -g 32 -r rx1.cs8

The command will print “Waiting for trigger. . . ” until a trigger signal is detected on the device’s trigger input.

In another terminal, use the serial number of the triggering HackRF One to initiate an operation to take place at the
same time as the triggered operation. For example:

• hackrf_transfer -d <serial number> -a 0 -l 32 -g 32 -r rx2.cs8

Note that no special argument is required to activate the trigger output.

Both hackrf_transfer commands will start sampling RF signals at the same time, accurate to less than one sample
period.

13.7 Additional Devices

Multiple HackRF Ones may be triggered by a single HackRF One. Ensure that all the devices share a common ground
and then connect one device’s trigger output to the trigger inputs of the other devices (with jumpers connected via a
breadboard, for example).

Equipment other than a HackRF One may be connected to a HackRF One’s trigger input or output. The trigger signal
is a 3.3 V pulse that triggers on the rising edge.

32 Chapter 13. Hardware Triggering

HackRF

13.8 References

HackRF’s trigger mechanism was contributed by the authors of Synchronisation of Low-Cost Open Source SDRs for
Navigation Applications which provides details about the implementation and background.

13.8. References 33

http://spcomnav.uab.es/docs/conferences/Bartolucci_NAVITEC_2016.pdf
http://spcomnav.uab.es/docs/conferences/Bartolucci_NAVITEC_2016.pdf

HackRF

34 Chapter 13. Hardware Triggering

CHAPTER

FOURTEEN

ENCLOSURE OPTIONS

The commercial version of HackRF One from Great Scott Gadgets ships with an injection molded plastic enclosure,
but it is designed to fit two optional enclosures:

• Hammond 1455J1201: HackRF One fits this extruded aluminum enclosure and other similar models from Ham-
mond Manufacturing. In order to use the enclosure’s end plates, you will have to drill them. An end plate
template can be found in the HackRF One KiCad layout.

• Acrylic sandwich: You can also use a laser cut acrylic enclosure with HackRF One. This is a good option for
access to the expansion headers. A design can be found in the HackRF One hardware directory. Use any laser
cutting service or purchase from a reseller.

35

https://greatscottgadgets.com/hackrf/acrylic-case/

HackRF

36 Chapter 14. Enclosure Options

CHAPTER

FIFTEEN

USB CABLES

The USB cable you choose can make a big difference in what you see when using your HackRF and especially when
using it around between 120 and 480 MHz where USB is doing all its work.

1. Use a shielded USB cable. The best way to guarantee RF interference from USB is to use an unshielded cable.
You can test that your cable is shielded by using a continuity tester to verify that the shield on one connector has
continuity to the shield on the connector at the other end of the cable.

2. Use a short USB cable. Trying anything larger than a 6ft cable may yield poor results. The longer the cable, the
more loss you can expect and when making this post a 15ft cable was tried and the result was the HackRF would
only power up half way.

3. For best results, select a cable with a ferrite core. These cables are usually advertised to be noise reducing and
are recognizable from the plastic block towards one end.

Screenshot before and after changing to a noise reducing cable (view full size image):

A shielded cable with ferrite core was used in the right-hand image.

The before and after images were both taken with the preamp on and the LNA and VGA both set to 24db.

15.1 Why isn’t my HackRF One detectable after I plug it into my com-
puter?

If your HackRF One isn’t immediately detectable it is very possible that your Micro USB cable is not meeting HackRF
One’s requirements. HackRF One requires quite a bit of supply current and solid USB 2.0 high speed communications
to operate. It is common for HackRF One to reveal cables with deficiencies such as carrying power but not data,
carrying data but not enough power, etc. Please try multiple cables to resolve this issue. More than once people have
gotten their HackRF One to work after trying their fifth cable.

37

http://i.imgur.com/e64LASK.jpg

HackRF

38 Chapter 15. USB Cables

CHAPTER

SIXTEEN

RF SHIELD INSTALLATION INSTRUCTIONS

Official Great Scott Gadgets HackRF Ones do not come from the factory with an RF shield installed around the radio
section of the PCB. They do, however, have pads in place so that one may be installed if a user has a reason and an
inclination to do so. The reason that they do not come preinstalled is that early testing revealed that the RF shield did
little to improve the performance of the HackRF One. The recommended RF shield is the BMI-S-230-F-R (frame)
with the BMI-S-230-C (shield). A two part RF shield is recommended because the shield section can be removed to
allow access to the RF section of the HackRF One. This can be important if it becomes necessary to probe any part of
the RF section, or to replace any parts of the RF section. However, even with a two part RF shield, it can be difficult to
access the RF section of the HackRF One in certain situations. The following steps are a basic set of instructions for
installing a RF shield on a HackRF One.

CAUTION: Soldering a RF shield onto a HackRF One comes with a certain amount of risk. Beyond the inherent
risks of soldering itself, this process may damage the HackRF One and no warranty is available to cover damage
incurred from this process. If you do choose to install a RF shield on your HackRF One please proceed with
caution.

1. Remove the HackRF One from the injection molded plastic case.

BE WARNED: Opening the plastic case of your HackRF One will most likely destroy the tabs that
hold it together.

Instructions for removing a HackRF One from its case can be found here.

2. Prepare the HackRF One PCB for soldering on the shield frame, by adding flux to the RF shield pads around the
radio section on the PCB.

3. Place the RF shield frame on the HackRF One, aligning it so that it makes contact with all of the pads around
the RF section of the board.

39

HackRF

4. Solder the shield to one pad to anchor it to the H1. Visually inspect the frame to assure that it is still aligned
properly.

5. Connect the frame to another pad on the opposite side from the first connection. Again, check that the frame is
still aligned properly.

40 Chapter 16. RF Shield Installation Instructions

HackRF

6. Connect at least one more pad, and then remove the pick and place bridge from the frame. Removing the pick
and place bridge is optional, but it is recommended.

7. Continue soldering the rest of the pads to the frame.

41

HackRF

8. Clean the flux and soldering residue with the appropriate solvent for the type of flux used. Be sure to let the
HackRF One dry completely before plugging it in to a power source.

9. Place the RF shield onto the frame and snap it into place.

10. If desired, put the HackRF One back into the plastic case, if it is still able to click together.

42 Chapter 16. RF Shield Installation Instructions

CHAPTER

SEVENTEEN

JAWBREAKER

HackRF Jawbreaker is the beta test hardware platform for the HackRF project.

(Jawbreaker picture provided by fd0 with Creative Commons License CC BY 3.0.)

17.1 Features

• half-duplex transceiver

• operating freq: 30 MHz to 6 GHz

• supported sample rates: 8 Msps to 20 Msps (quadrature)

• resolution: 8 bits

• interface: High Speed USB (with USB Micro-B connector)

• power supply: USB bus power

• portable

• open source

43

https://github.com/fd0

HackRF

17.2 Hardware Documentation

Schematic diagram, assembly diagram, and bill of materials can be found at https://github.com/greatscottgadgets/
hackrf/tree/master/hardware

17.3 Transmit Power

The maximum TX power for Jawbreaker varies by operating frequency:

• 30 MHz to 100 MHz: 5 dBm to 15 dBm, increasing as frequency decreases

• 100 MHz to 2300 MHz: 0 dBm to 10 dBm, increasing as frequency decreases

• 2170 MHz to 2740 MHz: 10 dBm to 15 dBm

• 2700 MHz to 4000 MHz: -5 dBm to 5 dBm, increasing as frequency decreases

• 4000 MHz to 6000 MHz: -15 dBm to 0 dBm, increasing as frequency decreases

Overall, the output power is enough to perform over-the-air experiments at close range or to drive an external amplifier.
If you connect an external amplifier, you should also use an external bandpass filter for your operating frequency.

Before you transmit, know the laws for the region you are transmitting in. Jawbreaker has not been tested for compliance
with regulations governing transmission of radio signals. You are responsible for using your Jawbreaker legally.

17.4 SMA, not RP-SMA

The connectors on Jawbreaker are SMA, not RP-SMA. SMA connectors and RP-SMA connectors look extremely
similar, the difference is that SMA connectors have a center pin. RP-SMA connectors are common on 2.4 GHz antennas
and are popular on Wi-Fi equipment. If you connect an RP-SMA antenna to Jawbreaker, it will seem to connect snugly
but won’t function at all because neither the male nor female side has a center pin.

17.5 Recommended PCB and Antenna Changes

Jawbreaker has an SMA antenna connector and it also includes a built-in PCB antenna intended for operation near 900
MHz. The built-in PCB antenna isn’t a very good antenna. A paperclip stuck into the SMA connector of the Jawbreaker
is likely to be better. We recommend that you free your Jawbreaker to operate with better antennas by cutting the PCB
trace to the PCB antenna with a knife. This enables the SMA connector to be used without interference from the PCB
antenna.

The trace to be cut is between the two solder pads inside a box labeled R44. There is an arrow printed on the board
that points to the R44 box. A video that demonstrates the antenna modification is on YouTube: HackRF Antenna
Modification.

Due to a manufacturing error, there is solder on the pads in box R44 that you should try to remove before you cut the
trace. R44 may appear as a single solder blob. If you have a soldering iron and solder wick/braid, use a soldering iron
and fine solder wick to remove as much solder as you can from the two R44 pads. Then, use a pen knife to gently cut
away the area between the two R44 pads. Make multiple, gentle cuts, instead of one or two forceful cuts. As you cut,
you’ll break through the black solder mask, then the copper trace between the pads, and stop when you reach fiberglass.
Remove the copper trace completely, so just the two R44 pads remain. Use a multimeter or continuity tester to verify
that the two R44 pads are no longer connected. If you don’t have a soldering iron, you can cut through the copper trace
and the solder blob all at once, but it requires a bit more effort. The only reason not to cut the PCB trace is if you want
to try Jawbreaker but don’t have any antenna with an SMA connector (or adapter).

44 Chapter 17. Jawbreaker

https://github.com/greatscottgadgets/hackrf/tree/master/hardware
https://github.com/greatscottgadgets/hackrf/tree/master/hardware
http://youtu.be/B2gwgNoqMxI
http://youtu.be/B2gwgNoqMxI

HackRF

If you want to restore the PCB antenna for some reason, you can install a 10 nF capacitor or a 0 ohm resistor on the
R44 pads or you may be able to simply create a solder bridge.

17.6 Expansion Interface

17.6.1 LPC

Boot config

Default boot configuration is SPIFI. Install headers and jumpers (and optionally resistors) to reconfigure.

Pin P43 P32 P42 P27
1 VCC VCC VCC VCC
2 P2_9 P2_8 P1_2 P1_1
3 GND GND GND GND

The table below shows which pins to short per header for a given selection.

Selection P43 P32 P42 P27
USART0 2-3 2-3 2-3 2-3
SPIFI 2-3 2-3 2-3 1-2
USB0 2-3 1-2 2-3 1-2
USSP0 2-3 1-2 1-2 1-2
USART3 1-2 2-3 2-3 2-3

P19 SPIFI Intercept header

Traces may be cut to install header and jumpers or use off-board SPI flash.

Pin Function
1 Flash DO
2 SPIFI_MISO
3 Flash DI
4 SPIFI_MOSI
5 Flash CLK
6 SPIFI_SCK
7 Flash CS
8 SPIFI_CS
9 Flash Hold
10 SPIFI_SIO3
11 Flash WP
12 SPIFI_SIO2

17.6. Expansion Interface 45

HackRF

P20 GPIO

Pin Function
1 GPIO3_8
2 GPIO3_9
3 GPIO3_10
4 GPIO3_11
5 GPIO3_12
6 GPIO3_13
7 GPIO3_14
8 GPIO3_15
9 GND
10 GND

P21 Analog

Pin Function
1 GND
2 ADC0_6
3 GND
4 ADC0_2
5 GND
6 ADC0_5
7 GND
8 ADC0_0

P22 I2S

Pin Function
1 VCC
2 I2S0_TX_SDA
3 I2S0_TX_WS
4 I2S0_TX_SCK
5 I2S0_TX_MCLK
6 GND

P25 LPC_ISP

Pin Function
1 GND
2 ISP
3 NC
4 U0_RXD
5 U0_TXD
6 RESET

46 Chapter 17. Jawbreaker

HackRF

P26 LPC_JTAG

Pin Function
1 VCC
2 TMS
3 GND
4 TCK
5 GND
6 TDO
7 NC
8 TDI
9 GND
10 RESET

P28 SD

Pin Function
1 GND
2 VCC
3 SD_CD
4 SD_DAT3
5 SD_DAT2
6 SD_DAT1
7 SD_DAT0
8 SD_VOLT0
9 SD_CMD
10 SD_POW
11 SD_CLK
12 NC

17.6.2 CPLD

P29 CPLD_JTAG

Pin Function
1 CPLD_TMS
2 CPLD_TDI
3 CPLD_TDO
4 CPLD_TCK
5 GND
6 NCC

17.6. Expansion Interface 47

HackRF

P30 BANK2_AUX

Pin Function
1 B2AUX1
2 B2AUX2
3 B2AUX3
4 B2AUX4
5 B2AUX5
6 B2AUX6
7 B2AUX7
8 B2AUX8
9 B2AUX9
10 B2AUX10
11 B2AUX11
12 B2AUX12
13 B2AUX13
14 B2AUX14
15 B2AUX15
16 B2AUX16

P31 BANK1_AUX

Pin Function
1 B1AUX9
2 B1AUX10
3 B1AUX11
4 B1AUX12
5 B1AUX13
6 B1AUX14
7 B1AUX15
8 B1AUX16
9 GND
10 GND

17.6.3 External clock

P2 CLKOUT

Install C165 and R92 as necessary to match output. For CMOS output, install 0 ohm resistor in place of C165; do not
install R92.

Pin Function
1 CLKOUT
2 GND
3 GND
4 GND
5 GND

48 Chapter 17. Jawbreaker

HackRF

P16 CLKIN

Install C118, C164, R45, R84 and R85 as necessary to match input.

For CMOS input, install 0 ohm resistors in place of C118 and C164; do not install R45, R84, or R85.

Pin Function
1 CLKIN
2 GND
3 GND
4 GND
5 GND

P17 CLKIN_JMP

Cut P17 short (trace) to enable external clock input. If short is cut, a jumper should be used on P17 at all times when
an external clock is not connected to P16.

Pin Function
1 GND
2 CLKIN

17.6.4 More

Additional headers are available. See the board files for additional details.

17.7 Differences between Jawbreaker and HackRF One

Jawbreaker was the beta platform that preceded HackRF One. HackRF One incorporates the following changes and
enhancements (at minimum):

• Antenna port: No modification is necessary to use the SMA antenna port on HackRF One.

• PCB antenna: Removed.

• Size: HackRF One is smaller at 120 mm x 75 mm (PCB size).

• Enclosure: The commercial version of HackRF One from Great Scott Gadgets ships with an injection molded
plastic enclosure. HackRF One is also designed to fit other enclosure options.

• Buttons: HackRF One has a RESET button and a DFU button for easy programming.

• Clock input and output: Installed and functional without modification.

• USB connector: HackRF One features a new USB connector and improved USB layout.

• Expansion interface: More pins are available for expansion, and pin headers are installed on HackRF One.

• Real-Time Clock: An RTC is installed on HackRF One.

• LPC4320 microcontroller: Jawbreaker had an LPC4330.

• RF shield footprint: An optional shield may be installed over HackRF One’s RF section.

17.7. Differences between Jawbreaker and HackRF One 49

https://github.com/greatscottgadgets/hackrf/tree/master/hardware/jawbreaker

HackRF

• Antenna port power: HackRF One can supply up to 50 mA at 3.0 to 3.3 V DC on the antenna port for compatibility
with powered antennas and other low power amplifiers.

• Enhanced frequency range: The RF performance of HackRF One is better than Jawbreaker, particularly at the
high and low ends of the operating frequency range. HackRF One can operate at 1 MHz or even lower.

50 Chapter 17. Jawbreaker

CHAPTER

EIGHTEEN

UPDATING FIRMWARE

HackRF devices ship with firmware on the SPI flash memory. The firmware can be updated with a USB cable and host
computer.

These instructions allow you to upgrade the firmware in order to take advantage of new features or bug fixes.

18.1 Updating the SPI Flash Firmware

To update the firmware on a working HackRF One, use the hackrf_spiflash program:

hackrf_spiflash -w hackrf_one_usb.bin

You can find the firmware binary (hackrf_one_usb.bin) in the firmware-bin directory of the latest release package or
you can compile your own from the source. For Jawbreaker, use hackrf_jawbreaker_usb.bin. If you compile from
source, the file will be called hackrf_usb.bin.

The hackrf_spiflash program is part of hackrf-tools.

When writing a firmware image to SPI flash, be sure to select firmware with a filename ending in “.bin”.

After writing the firmware to SPI flash, you may need to reset the HackRF device by pressing the RESET button or by
unplugging it and plugging it back in.

If you get an error that mentions HACKRF_ERROR_NOT_FOUND, it is often a permissions problem on your OS.

18.2 Only if Necessary: Recovering the SPI Flash Firmware

If the firmware installed in SPI flash has been damaged or if you are programming a home-made HackRF for the first
time, you will not be able to immediately use the hackrf_spiflash program as listed in the above procedure. Follow
these steps instead:

1. Follow the DFU Boot instructions to start the HackRF in DFU boot mode.

2. Type dfu-util --device 1fc9:000c --alt 0 --download hackrf_one_usb.dfu to load firmware
from a release package into RAM. If you have a Jawbreaker, use hackrf_jawbreaker_usb.dfu instead. Alterna-
tively, use make -e BOARD=HACKRF_ONE RUN_FROM=RAM program to load the firmware into RAM and start
it.

3. Follow the SPI flash firmware update procedure above to write the “.bin” firmware image to SPI flash.

51

https://github.com/greatscottgadgets/hackrf/releases/latest
https://github.com/greatscottgadgets/hackrf/tree/master/firmware

HackRF

18.3 Only if Necessary: DFU Boot

DFU boot mode is normally only needed if the firmware is not working properly or has never been installed.

The LPC4330 microcontroller on HackRF is capable of booting from several different code sources. By default,
HackRF boots from SPI flash memory (SPIFI). It can also boot HackRF in DFU (USB) boot mode. In DFU boot
mode, HackRF will enumerate over USB, wait for code to be delivered using the DFU (Device Firmware Update)
standard over USB, and then execute that code from RAM. The SPIFI is normally unused and unaltered in DFU mode.

To start up HackRF One in DFU mode, hold down the DFU button while powering it on or while pressing and releasing
the RESET button. Release the DFU button after the 3V3 LED illuminates. The 1V8 LED should remain off. At this
point HackRF One is ready to receive firmware over USB.

To start up Jawbreaker in DFU mode, short two pins on one of the “BOOT” headers while power is first supplied.
The pins that must be shorted are pins 1 and 2 of header P32 on Jawbreaker. Header P32 is labeled “P2_8” on most
Jawbreakers but may be labeled “2” on prototype units. Pin 1 is labeled “VCC”. Pin 2 is the center pin. After DFU
boot, you should see VCCLED illuminate and note that 1V8LED does not illuminate. At this point Jawbreaker is ready
to receive firmware over USB.

You should only use a firmware image with a filename ending in “.dfu” over DFU, not firmware ending in “.bin”.

18.4 Obtaining DFU-Util

On fresh installs of your OS, you may need obtain a copy of DFU-Util. For most Linux distributions it should be
available as a package, for example on Debian/Ubuntu

sudo apt-get install dfu-util

If you are using a platform without a dfu-util package, build instruction can be found here on the dfu-util source forge
build page.

cd ~
sudo apt-get build-dep dfu-util
sudo apt-get install libusb-1.0-0-dev
git clone git://git.code.sf.net/p/dfu-util/dfu-util
cd dfu-util
./autogen.sh
./configure
make
sudo make install

Now you will have the current version of DFU Util installed on your system.

18.5 Updating the CPLD

Older versions of HackRF firmware (prior to release 2021.03.1) require an additional step to program a bitstream into
the CPLD.

To update the CPLD image, first update the SPI flash firmware, libhackrf, and hackrf-tools to the version you are
installing. Then:

hackrf_cpldjtag -x firmware/cpld/sgpio_if/default.xsvf

52 Chapter 18. Updating Firmware

http://dfu-util.sourceforge.net/build.html
http://dfu-util.sourceforge.net/build.html

HackRF

After a few seconds, three LEDs should start blinking. This indicates that the CPLD has been programmed successfully.
Reset the HackRF device by pressing the RESET button or by unplugging it and plugging it back in.

18.5. Updating the CPLD 53

HackRF

54 Chapter 18. Updating Firmware

CHAPTER

NINETEEN

FIRMWARE DEVELOPMENT SETUP

Firmware build instructions are included in the repository under firmware/README:

https://github.com/greatscottgadgets/hackrf/blob/master/firmware/README

55

https://github.com/greatscottgadgets/hackrf/blob/master/firmware/README

HackRF

56 Chapter 19. Firmware Development Setup

CHAPTER

TWENTY

LPC43XX DEBUGGING

Various debugger options for the LPC43xx exist.

20.1 Black Magic Probe

https://github.com/blacksphere/blackmagic

An example of using gdb with the Black Magic Probe:

arm-none-eabi-gdb -n blinky.elf
target extended-remote /dev/ttyACM0
monitor swdp_scan
attach 1
set {int}0x40043100 = 0x10000000
load
cont

It is possible to attach to the M0 instead of the M4 if you use jtag_scan instead of swdp_scan, but the Black Magic
Probe had some bugs when trying to work with the M0 the last time I tried it.

20.2 LPC-Link

(included with LPCXpresso boards)

TitanMKD has had some success. See the tutorial in hackrf/doc/LPCXPresso_Flash_Debug_Tutorial.pdf or .odt (PDF
and OpenOffice document) Doc Link [https://github.com/mossmann/hackrf/tree/master/doc)

20.3 ST-LINK/V2

20.3.1 Hardware Configuration

Start with an STM32F4-Discovery board. Remove the jumpers from CN3. Connect the target’s SWD interface to CN2
“SWD” connector.

57

https://github.com/blacksphere/blackmagic
https://github.com/mossmann/hackrf/tree/master/doc

HackRF

20.3.2 Software Configuration

I’m using libusb-1.0.9.

Install OpenOCD-0.6.0 dev

Cloned at hash a21affa42906f55311ec047782a427fcbcb98994
git clone git://openocd.git.sourceforge.net/gitroot/openocd/openocd
cd openocd
./bootstrap
./configure --enable-stlink --enable-buspirate --enable-jlink --enable-maintainer-mode
make
sudo make install

OpenOCD configuration files

openocd.cfg

#debug_level 3
source [find interface/stlink-v2.cfg]
source ./lpc4350.cfg

lpc4350.cfg

set _CHIPNAME lpc4350
set _M0_CPUTAPID 0x4ba00477
set _M4_SWDTAPID 0x2ba01477
set _M0_TAPID 0x0BA01477
set _TRANSPORT stlink_swd

transport select $_TRANSPORT

stlink newtap $_CHIPNAME m4 -expected-id $_M4_SWDTAPID
stlink newtap $_CHIPNAME m0 -expected-id $_M0_TAPID

target create $_CHIPNAME.m4 stm32_stlink -chain-position $_CHIPNAME.m4
#target create $_CHIPNAME.m0 stm32_stlink -chain-position $_CHIPNAME.m0

target.xml, nabbed from an OpenOCD mailing list thread, to fix a communication problem between GDB and newer
OpenOCD builds.

<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target>
<feature name="org.gnu.gdb.arm.core">
<reg name="r0" bitsize="32" type="uint32"/>
<reg name="r1" bitsize="32" type="uint32"/>
<reg name="r2" bitsize="32" type="uint32"/>
<reg name="r3" bitsize="32" type="uint32"/>
<reg name="r4" bitsize="32" type="uint32"/>
<reg name="r5" bitsize="32" type="uint32"/>
<reg name="r6" bitsize="32" type="uint32"/>

(continues on next page)

58 Chapter 20. LPC43xx Debugging

HackRF

(continued from previous page)

<reg name="r7" bitsize="32" type="uint32"/>
<reg name="r8" bitsize="32" type="uint32"/>
<reg name="r9" bitsize="32" type="uint32"/>
<reg name="r10" bitsize="32" type="uint32"/>
<reg name="r11" bitsize="32" type="uint32"/>
<reg name="r12" bitsize="32" type="uint32"/>
<reg name="sp" bitsize="32" type="data_ptr"/>
<reg name="lr" bitsize="32"/>
<reg name="pc" bitsize="32" type="code_ptr"/>
<reg name="cpsr" bitsize="32" regnum="25"/>

</feature>
<feature name="org.gnu.gdb.arm.fpa">
<reg name="f0" bitsize="96" type="arm_fpa_ext" regnum="16"/>
<reg name="f1" bitsize="96" type="arm_fpa_ext"/>
<reg name="f2" bitsize="96" type="arm_fpa_ext"/>
<reg name="f3" bitsize="96" type="arm_fpa_ext"/>
<reg name="f4" bitsize="96" type="arm_fpa_ext"/>
<reg name="f5" bitsize="96" type="arm_fpa_ext"/>
<reg name="f6" bitsize="96" type="arm_fpa_ext"/>
<reg name="f7" bitsize="96" type="arm_fpa_ext"/>
<reg name="fps" bitsize="32"/>

</feature>
</target>

20.4 Run ARM GDB

Soon, I should dump this stuff into a .gdbinit file.

arm-none-eabi-gdb -n
target extended-remote localhost:3333
set tdesc filename target.xml
monitor reset init
monitor mww 0x40043100 0x10000000
monitor mdw 0x40043100 # Verify 0x0 shadow register is set properly.
file lpc4350-test.axf # This is an ELF file.
load # Place image into RAM.
monitor reset init
break main # Set a breakpoint.
continue # Run to breakpoint.
continue # To continue from the breakpoint.
step # Step-execute the next source line.
stepi # Step-execute the next processor instruction.
info reg # Show processor registers.

More GDB tips for the GDB-unfamiliar:

Write the variable "buffer" (an array) to file "buffer.u8".
dump binary value buffer.u8 buffer

Display the first 32 values in buffer whenever you halt
(continues on next page)

20.4. Run ARM GDB 59

HackRF

(continued from previous page)

execution.
display/32xh buffer

Print the contents of a range of registers (in this case the
CGU peripheral, starting at 0x40050014, for 46 words):
x/46 0x40050014

And still more, for debugging ARM Cortex-M4 Hard Faults:

Assuming you have a hard-fault handler wired in:
display/8xw args

Examine fault-related registers:

Configurable Fault Status Register (CFSR) contains:
CFSR[15:8]: BusFault Status Register (BFSR)
"Shows the status of bus errors resulting from instruction
prefetches and data accesses."
BFSR[7]: BFARVALID: BFSR contents valid.
BFSR[5]: LSPERR: fault during FP lazy state preservation.
BFSR[4]: STKERR: derived bus fault on exception entry.
BFSR[3]: UNSTKERR: derived bus fault on exception return.
BFSR[2]: IMPRECISERR: imprecise data access error.
BFSR[1]: PRECISERR: precise data access error, faulting
address in BFAR.
BFSR[0]: IBUSERR: bus fault on instruction prefetch. Occurs
only if instruction is issued.
display/xw 0xE000ED28

BusFault Address Register (BFAR)
"Shows the address associated with a precise data access fault."
"This is the location addressed by an attempted data access that
was faulted. The BFSR shows the reason for the fault and whether
BFAR_ADDRESS is valid..."
"For unaligned access faults, the value returned is the address
requested by the instruction. This might not be the address that
faulted."
display/xw 0xE000ED38

60 Chapter 20. LPC43xx Debugging

CHAPTER

TWENTYONE

LPC43XX SGPIO CONFIGURATION

The LPC43xx SGPIO peripheral is used to move samples between USB and the ADC/DAC chip (MAX5864). The
SGPIO is a peripheral that has a bunch of 32-bit shift registers. These shift registers can be configured to act as a
parallel interface of different widths. For HackRF, we configure the SGPIO to transfer eight bits at a time. The SGPIO
interface can also accept an external clock, which we use to synchronize transfers with the sample clock.

In the current HackRF design, there is a CPLD which manages the interface between the MAX5864 and the SGPIO
interface. There are four SGPIO signals that control the SGPIO data transfer:

• Clock: Determines when a value on the SGPIO data bus is transferred.

• Direction: Determines whether the MAX5864 DA (ADC) data is driven onto the SGPIO lines, or if the SGPIO
lines drive the data bus with data for the MAX5864 DD (DAC) signals.

• Data Valid: Indicates a sample on the SGPIO data bus is valid data.

• Transfer Enable: Allows SGPIO to synchronize with the I/Q data stream. The MAX5864 produces/consumes
two values (quadrature/complex value) per sample period – an I value and a Q value. These two values are
multiplexed on the SGPIO lines. This signal suspends data valid until the I value should be transferred.

21.1 Why not use GPDMA to transfer samples through SGPIO?

It would be great if we could, as that would free up lots of processor time. Unfortunately, the GPDMA scheme in
the LPC43xx does not seem to support peripheral-to-memory and memory-to-peripheral transfers with the SGPIO
peripheral.

You might observe that the SGPIO peripheral can generate requests from SGPIO14 and SGPIO15, using an arbitrary bit
pattern in the slice shift register. The pattern in the slice determines the request interval. That’s a good start. However,
how do you specify which SGPIO shadow registers are read/written at each request, and in which order those registers
are transferred with memory? It turns out you can’t. In fact, it appears that an SGPIO request doesn’t cause any transfer
at all, if your source or destination is “peripheral”. Instead, the SGPIO request is intended to perform a memory-to-
memory transfer synchronized with SGPIO. But you’re on your own as far as getting data to/from the SGPIO shadow
registers. I believe this is why the SGPIO camera example in the user manual describes an SGPIO interrupt doing the
SGPIO shadow register transfer, and the GPDMA doing moves from one block of RAM to another.

Perhaps if we transfer only one SGPIO shadow register, using memory-to-memory? Then we don’t have to worry
about the order of SGPIO registers, or which ones need to be transferred. It turns out that when you switch over to
memory-to-memory transfers, you lose peripheral request generation. So the GPDMA will transfer as fast as possible
– far faster than words are produced/consumed by SGPIO.

I’d really love to be wrong about all this, but all my testing has indicated there’s no workable solution to using GPDMA
that’s any better than using SGPIO interrupts to transfer samples. If you want some sample GPDMA code to experiment
with, please contact Jared (sharebrained on #hackrf in Discord or IRC).

61

HackRF

62 Chapter 21. LPC43xx SGPIO Configuration

CHAPTER

TWENTYTWO

INSTALLING HACKRF SOFTWARE

HackRF software includes HackRF Tools and libhackrf. HackRF Tools are the commandline utilities that let you
interact with your HackRF. libhackrf is a low level library that enables software on your computer to operate with
HackRF.

22.1 Install Using Package Managers

Unless developing or testing new features for HackRF, we highly recommend that most users use build systems or
package managers provided for their operating system. Our suggested operating system for use with HackRF is
Ubuntu.

22.1.1 FreeBSD

You can use the binary package: # pkg install hackrf

You can also build and install from ports:

cd /usr/ports/comms/hackrf
make install

22.1.2 Linux: Arch

pacman -S hackrf

22.1.3 Linux: Fedora / Red Hat

sudo dnf install hackrf -y

63

HackRF

22.1.4 Linux: Gentoo

emerge -a net-wireless/hackrf-tools

22.1.5 Linux: Ubuntu / Debian

sudo apt-get install hackrf

22.1.6 OS X (10.5+): Homebrew

brew install hackrf

22.1.7 OS X (10.5+): MacPorts

sudo port install hackrf

22.1.8 Windows: Binaries

Binaries are provided as part of the PothosSDR project, they can be downloaded here.

22.2 Installing From Source

22.2.1 Linux / OS X / *BSD: Building HackRF Software From Source

Acquire the source for the HackRF tools from either a release archive or git: git clone https://github.com/
greatscottgadgets/hackrf.git

Once you have the source downloaded, the host tools can be built as follows:

cd hackrf/host
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig

If you have HackRF hardware, you may need to update the firmware to match the host tools versions.

64 Chapter 22. Installing HackRF Software

http://downloads.myriadrf.org/builds/PothosSDR/?C=M;O=D
https://github.com/greatscottgadgets/hackrf/releases

HackRF

22.2.2 Windows: Prerequisites for Cygwin, MinGW, or Visual Studio

• cmake-2.8.12.1 or later from http://www.cmake.org/cmake/resources/software.html

• libusbx-1.0.18 or later from http://sourceforge.net/projects/libusbx/files/latest/download?source=files

• fftw-3.3.5 or later from http://www.fftw.org/install/windows.html

• Install Windows driver for HackRF hardware or use Zadig see
http://sourceforge.net/projects/libwdi/files/zadig

– If you want to use Zadig select HackRF USB device and just install/replace it with WinUSB driver.

Note for Windows build: You shall always execute hackrf-tools from Windows command shell and not from Cygwin
or MinGW shell because on Cygwin/MinGW Ctrl+C is not managed correctly and especially for hackrf_transfer the
Ctrl+C (abort) will not stop correctly and will corrupt the file.

22.2.3 Windows: Installing HackRF Software via Cygwin

mkdir host/build
cd host/build
cmake ../ -G "Unix Makefiles" -DCMAKE_LEGACY_CYGWIN_WIN32=1 -DLIBUSB_INCLUDE_DIR=/usr/
→˓local/include/libusb-1.0/
make
make install

22.2.4 Windows: Installing HackRF Software via MinGW

mkdir host/build
cd host/build
cmake ../ -G "MSYS Makefiles" -DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/
make
make install

22.2.5 Windows: Installing HackRF Software via Visual Studio 2015 x64

Create library definition for MSVC to link to C:\fftw-3.3.5-dll64> lib /machine:x64 /def:libfftw3f-3.
def

c:\hackrf\host\build> cmake ../ -G "Visual Studio 14 2015 Win64" \
-DLIBUSB_INCLUDE_DIR=c:\libusb-1.0.21\libusb \
-DLIBUSB_LIBRARIES=c:\libusb-1.0.21\MS64\dll\lib\libusb-1.0.lib \
-DTHREADS_PTHREADS_INCLUDE_DIR=c:\pthreads-w32-2-9-1-release\Pre-built.2\include \
-DTHREADS_PTHREADS_WIN32_LIBRARY=c:\pthreads-w32-2-9-1-release\Pre-built.2\lib\x64\
→˓pthreadVC2.lib \
-DFFTW_INCLUDES=C:\fftw-3.3.5-dll64 \
-DFFTW_LIBRARIES=C:\fftw-3.3.5-dll64\libfftw3f-3.lib

CMake will produce a solution file named HackRF.sln and a series of project files which can be built with msbuild
as follows: c:\hackrf\host\build> msbuild HackRF.sln

22.2. Installing From Source 65

http://www.cmake.org/cmake/resources/software.html
http://sourceforge.net/projects/libusbx/files/latest/download?source=files
http://www.fftw.org/install/windows.html
http://sourceforge.net/projects/libwdi/files/zadig

HackRF

66 Chapter 22. Installing HackRF Software

CHAPTER

TWENTYTHREE

HACKRF TOOLS

Great Scott Gadgets provides some commandline tools for interacting with HackRF.

• hackrf_info Read device information from HackRF such as serial number and firmware version.

• hackrf_transfer Send and receive signals using HackRF. Input/output files are 8-bit signed quadrature
samples.

• hackrf_sweep, a command-line spectrum analyzer.

• hackrf_clock Read and write clock input and output configuration.

• hackrf_operacake Configure Opera Cake antenna switch connected to HackRF.

• hackrf_spiflash A tool to write new firmware to HackRF. See: Updating Firmware.

• hackrf_debug Read and write registers and other low-level configuration for debugging.

23.1 hackrf_sweep

23.1.1 Usage

[-h] # this help
[-d serial_number] # Serial number of desired HackRF
[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable
[-f freq_min:freq_max] # minimum and maximum frequencies in MHz
[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable
[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps
[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps
[-w bin_width] # FFT bin width (frequency resolution) in Hz, 2445-5000000
[-1] # one shot mode
[-N num_sweeps] # Number of sweeps to perform
[-B] # binary output
[-I] # binary inverse FFT output
-r filename # output file

67

HackRF

23.1.2 Output fields

date, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, ...

Running hackrf_sweep -f 2400:2490 gives the following example results:

Date Time Hz
Low

Hz
High

Hz bin
width

Num
Sam-
ples

dB dB dB dB dB

2019-
01-03

11:57:34.967805240000000024050000001000000.0020 -64.72 -63.36 -60.91 -61.74 -58.58

2019-
01-03

11:57:34.967805241000000024150000001000000.0020 -69.22 -60.67 -59.50 -61.81 -58.16

2019-
01-03

11:57:34.967805240500000024100000001000000.0020 -61.19 -70.14 -60.10 -57.91 -61.97

2019-
01-03

11:57:34.967805241500000024200000001000000.0020 -72.93 -79.14 -68.79 -70.71 -82.78

2019-
01-03

11:57:34.967805242000000024250000001000000.0020 -67.57 -61.61 -57.29 -61.90 -70.19

2019-
01-03

11:57:34.967805243000000024350000001000000.0020 -56.04 -59.58 -66.24 -66.02 -62.12

Each sweep across the entire specified frequency range is given a single time stamp.

The fifth column tells you the width in Hz (1 MHz in this case) of each frequency bin, which you can set with -w. The
sixth column is the number of samples analyzed to produce that row of data.

Each of the remaining columns shows the power detected in each of several frequency bins. In this case there are five
bins, the first from 2400 to 2401 MHz, the second from 2401 to 2402 MHz, and so forth.

68 Chapter 23. HackRF Tools

CHAPTER

TWENTYFOUR

THIRD-PARTY SOFTWARE COMPATIBLE WITH HACKRF

24.1 Software That Has Direct Support For HackRF

• GQRX

– http://gqrx.dk/

• GNU Radio

– https://www.gnuradio.org/

• GNU Radio Mode-S/ADS-B

– https://github.com/bistromath/gr-air-modes

• QSpectrumAnalyzer

– https://github.com/xmikos/qspectrumanalyzer

• SDR#

– https://airspy.com/download/

– Windows OS only

– Only nightly builds currently support HackRF One

• SDR Console

– https://www.sdr-radio.com/Console

• Spectrum Analyzer GUI for hackrf_sweep for Windows

– https://github.com/pavsa/hackrf-spectrum-analyzer

• Universal Radio Hacker (Windows/Linux)

– https://github.com/jopohl/urh

• Web-based APRS tracker

– https://xakcop.com/aprs-sdr

69

http://gqrx.dk/
https://www.gnuradio.org/
https://github.com/bistromath/gr-air-modes
https://github.com/xmikos/qspectrumanalyzer
https://airspy.com/download/
https://www.sdr-radio.com/Console
https://github.com/pavsa/hackrf-spectrum-analyzer
https://github.com/jopohl/urh
https://xakcop.com/aprs-sdr/

HackRF

24.2 Software That Can Use Data From HackRF

• Baudline

– http://www.baudline.com/

– Can view/process HackRF data, e.g. hackrf_transfer

• Inspectrum

– https://github.com/miek/inspectrum

– Capture analysis tool with advanced features

• Matlab

fid = open('samples.bin', 'r');
len = 1000; % 1000 samples
y = fread(fid, 2*len, 'int8');
y = y(1:2:end) + 1j*y(2:2:end);
fclose(fid)

24.3 Troubleshooting Recommendations

Many of these tools require libhackrf and at times HackRF Tools. It may help you to have updated libhackrf and
HackRF Tools when troubleshooting these applications.

It is also strongly suggested, and usually required, that your HackRF Tools and HackRF firmware match.

70 Chapter 24. Third-Party Software Compatible With HackRF

http://www.baudline.com/
https://github.com/miek/inspectrum

CHAPTER

TWENTYFIVE

SAMPLING RATE AND BASEBAND FILTERS

Using a sampling rate of less than 8MHz is not recommended. Partly, this is because the MAX5864 (ADC/DAC chip)
isn’t specified to operate at less than 8MHz, and therefore, no promises are made by Maxim about how it performs. But
more importantly, the baseband filter in the MAX2837 has a minimum bandwidth of 1.75MHz. It can’t provide enough
filtering at 2MHz sampling rate to remove substantial signal energy in adjacent spectrum (more than +/-1MHz from
the tuned frequency). The MAX2837 datasheet suggests that at +/-1MHz, the filter provides only 4dB attenuation, and
at +/-2MHz (where a signal would alias right into the center of your 2MHz spectrum), it attenuates about 33dB. That’s
significant. Here’s a picture:

At 8MHz sampling rate, and using the minimum 1.75MHz bandwidth filter, this is the response:

You can see that the attenuation is more than 60dB at +/-2.8MHz, which is more than sufficient to remove significant

71

HackRF

adjacent spectrum interference before the ADC digitizes the baseband. If using this configuration to get a 2MHz
sampling rate, use a GNU Radio block after the 8MHz source that performs a 4:1 decimation with a decently sharp
low pass filter (complex filter with a cut-off of <1MHz).

72 Chapter 25. Sampling Rate and Baseband Filters

CHAPTER

TWENTYSIX

SETTING GAIN CONTROLS FOR RX

A good default setting to start with is RF=0 (off), IF=16, baseband=16. Increase or decrease the IF and baseband gain
controls roughly equally to find the best settings for your situation. Turn on the RF amp if you need help picking up
weak signals. If your gain settings are too low, your signal may be buried in the noise. If one or more of your gain
settings is too high, you may see distortion (look for unexpected frequencies that pop up when you increase the gain)
or the noise floor may be amplified more than your signal is.

73

HackRF

74 Chapter 26. Setting Gain Controls for RX

CHAPTER

TWENTYSEVEN

VIRTUAL MACHINES

HackRF requires the ability to stream data at very high rates over USB. Unfortunately VM software typically has
problems with USB passthrough; especially continuous high speed USB transfers. It is recommended to not use a
HackRF with a VM.

75

HackRF

76 Chapter 27. Virtual Machines

CHAPTER

TWENTYEIGHT

OPERA CAKE

Opera Cake is an antenna switching add-on board for HackRF One. Consisting of two 1x4 switches, Opera Cake also
has a cross-over switch that permits operation as a 1x8 switch. Up to eight Opera Cakes may be stacked onto a single
HackRF One provided that each Opera Cake is configured with a different board address.

Opera Cake can be used as a 1x8 switch to connect your HackRF One to a variety of antennas at once, such as a long
wire antenna for HF bands, a discone for VHF and UHF, a dipole for 2.4 GHz, and a dish for a satellite band. Once
connected to your Opera Cake you can switch between all of your antennas in software instead of making physical
hardware swaps.

When set up as a pair of 1x4 switches you could use Opera Cake as a switched filter bank. To do this, connect port A1
to B1, A2 to B2, A3 to B3, and A4 to B4 through physical SMA filters and cables of your choosing. This setup allows
you to change your transmit or receive to be through the filter of your choosing without having to reconnect hardware
every time you would like to use a different filter.

Opera Cake is configured with the hackrf_operacake command-line tool.

77

HackRF

78 Chapter 28. Opera Cake

CHAPTER

TWENTYNINE

FREQUENTLY ASKED QUESTIONS

29.1 Why the name ‘Opera Cake’?

Internally at Great Scott Gadgets, HackRF related boards are code named with a candy or confection name. The Opera
Cake code name was fun enough that we didn’t change from it when we released the project.

29.2 When was Opera Cake first for sale?

Great Scott Gadgets first released Opera Cake for sale in 2022. The open source project for Opera Cake has been
available since 2016 from Great Scott Gadgets.

79

HackRF

80 Chapter 29. Frequently Asked Questions

CHAPTER

THIRTY

HARDWARE

30.1 Banks

The ports on Opera Cake are grouped in two banks (or “sides”), one on each end of the board. Bank A consists of ports
A0 through A4 while bank B consists of ports B0 through B4.

30.2 Ports

Opera Cake has two primary ports, A0 and B0, each of which can be switched to any of eight secondary ports, A1-A4
and B1-B4. Each primary port is always connected to one secondary port. By default, A0 is connected to A1, and B0
is connected to B1. It is not possible to connect both primary ports to secondary ports in the same bank at the same
time.

30.3 LEDs

Port selections are indicated by LEDs next to each port’s connector. Port A0 and the secondary port connected to A0
are indicated with a green LED. Port B0 and the secondary port connected to B0 are indicated with a yellow LED.

81

HackRF

82 Chapter 30. Hardware

CHAPTER

THIRTYONE

BOARD ADDRESSING

Each Opera Cake has a numeric address set by optional jumpers installed on header P1. The default address (without
jumpers) is 0. The --list or -l option can be used to list the address(es) of one or more Opera Cakes installed on a
HackRF One:

hackrf_operacake -l

The address may be set to any number from 0 to 7 by installing jumpers across the A0, A1, and/or A2 pins of header
P1.

Address A2 Jumper A1 Jumper A0 Jumper
0 No No No
1 No No Yes
2 No Yes No
3 No Yes Yes
4 Yes No No
5 Yes No Yes
6 Yes Yes No
7 Yes Yes Yes

When configuring an Opera Cake, the address may be specified with the --address or -o option:

hackrf_operacake -o 1 -a A1 -b B2

If the address is unspecified, 0 is assumed. It is only necessary to specify the address if the address has been changed
with the addition of jumpers, typically required only if multiple Opera Cakes are stacked onto a single HackRF One.

83

HackRF

84 Chapter 31. Board Addressing

CHAPTER

THIRTYTWO

PORT CONFIGURATIONS

Port connections may be configured manually. For example, to connect A0 to A2 and B0 to B3:

hackrf_operacake -a A2 -b B3

To connect A0 to B2 and B0 to A4:

hackrf_operacake -a B2 -b A4

If only one primary port is configured, the other primary port will be connected to the first secondary port on the
opposite side. For example, after the next two commands B0 will be connected to A1:

hackrf_operacake -a A2 -b B3
hackrf_operacake -a B2

85

HackRF

86 Chapter 32. Port Configurations

CHAPTER

THIRTYTHREE

MODES OF OPERATION

Opera Cake supports three modes of operation: manual, frequency, and time. The operating mode can be set with
the --mode or -m option, and the active operating mode is displayed with the --list or -l option.

33.1 Manual Mode

The default mode of operation is manual. In manual mode, fixed port connections are configured with the -a and
-b options as in the port configuration examples. If the operating mode has been changed, it can be changed back to
manual mode with:

hackrf_operacake -m manual

33.2 Frequency Mode

In frequency mode, the A0 port connection switches automatically whenever the HackRF is tuned to a different fre-
quency. This is useful when antennas for different frequency bands are connected to various ports.

The bands are specified in priority order. The final band specified will be used for frequencies not covered by the other
bands specified.

To assign frequency bands to ports you must use the -f <port:min:max> option for each band, with the minimum
and maximum frequencies specified in MHz. For example, to use port A1 for 100 MHz to 600 MHz, A3 for 600 MHz
to 1200 MHz, and B2 for 0 MHz to 4 GHz:

hackrf_operacake -m frequency -f A1:100:600 -f A3:600:1200 -f B2:0:4000

If tuning to precisely 600 MHz, A1 will be used as it is listed first. Tuning to any frequency over 4 GHz will use B2 as
it is the last listed and therefore the default port.

Only the A0 port connection is specified in frequency mode. Whenever the A0 connection is switched, the B0 connec-
tion is also switched to the secondary port mirroring A0’s secondary port. For example, when A0 switches to B2, B0
is switched to A2.

Once configured, an Opera Cake will remain in frequency mode until the mode is reconfigured or until the HackRF
One is reset. You can pre-configure the Opera Cake in frequency mode, and the automatic switching will continue to
work while using other software.

Although multiple Opera Cakes on a single HackRF One may be set to frequency mode at the same time, they share a
single switching plan. This can be useful, for example, for a filter bank consisting of eight filters.

87

HackRF

33.3 Time Mode

In time mode, the A0 port connection switches automatically over time, counted in units of the sample period. This is
useful for experimentation with pseudo-doppler direction finding.

To cycle through four ports, one port every 1000 samples:

hackrf_operacake -m time -t A1:1000 -t A2:1000 -t A3:1000 -t A4:1000

When the duration on multiple ports is the same, the -w option can be used to set the default dwell time:

hackrf_operacake --mode time -w 1000 -t A1 -t A2 -t A3 -t A4

Only the A0 port connection is specified in time mode. Whenever the A0 connection is switched, the B0 connection is
switched to the secondary port mirroring A0’s secondary port. For example, when A0 switches to B2, B0 is switched
to A2.

Once configured, an Opera Cake will remain in time mode until the mode is reconfigured or until the HackRF One is
reset. You can pre-configure the Opera Cake in time mode, and the automatic switching will continue to work while
using other software.

Although multiple Opera Cakes on a single HackRF One may be set to time mode at the same time, they share a single
switching plan.

88 Chapter 33. Modes of Operation

	Getting Help
	FAQ
	What is the Transmit Power of HackRF?
	What is the Receive Power of HackRF?
	What is the minimum signal power level that can be detected by HackRF?
	Is HackRF full-duplex?
	Why isn’t HackRF One full-duplex?
	How could the HackRF One design be changed to make it full-duplex?
	What is the big spike in the center of my received spectrum?
	How do I deal with the big spike in the middle of my spectrum?
	What gain controls are provided by HackRF?
	Why is the RF gain setting restricted to two values?
	Why are the LEDs on HackRF different colours?
	Where can I purchase HackRF?

	HackRF Community Projects and Mentions
	Retired Projects

	HackRF One
	Features

	Minimum Host System Requirements for HackRF
	List of Hardware Revisions
	HackRF One r1–r4
	HackRF One r5
	HackRF One r6
	HackRF One r7
	HackRF One r8
	HackRF One r9
	HackRF One r10
	Hardware Revision Identification

	Hardware Components
	Block Diagrams
	HackRF One r1-r8 Block Diagram
	HackRF One r9 Block Diagram

	LEDs
	Buttons
	Connectors
	External Clock Interface (CLKIN and CLKOUT)
	Expansion Interface
	P9 Baseband
	P20 GPIO
	P22 I2S
	P28 SD

	Hardware Triggering
	Clock Synchronization
	Requirements
	Open Your HackRF One
	Identify the Trigger Pins
	Connect the Trigger Output to the Trigger Input
	Usage
	Additional Devices
	References

	Enclosure Options
	USB Cables
	Why isn’t my HackRF One detectable after I plug it into my computer?

	RF Shield Installation Instructions
	Jawbreaker
	Features
	Hardware Documentation
	Transmit Power
	SMA, not RP-SMA
	Recommended PCB and Antenna Changes
	Expansion Interface
	LPC
	Boot config
	P19 SPIFI Intercept header
	P20 GPIO
	P21 Analog
	P22 I2S
	P25 LPC_ISP
	P26 LPC_JTAG
	P28 SD

	CPLD
	P29 CPLD_JTAG
	P30 BANK2_AUX
	P31 BANK1_AUX

	External clock
	P2 CLKOUT
	P16 CLKIN
	P17 CLKIN_JMP

	More

	Differences between Jawbreaker and HackRF One

	Updating Firmware
	Updating the SPI Flash Firmware
	Only if Necessary: Recovering the SPI Flash Firmware
	Only if Necessary: DFU Boot
	Obtaining DFU-Util
	Updating the CPLD

	Firmware Development Setup
	LPC43xx Debugging
	Black Magic Probe
	LPC-Link
	ST-LINK/V2
	Hardware Configuration
	Software Configuration
	Install OpenOCD-0.6.0 dev
	OpenOCD configuration files

	Run ARM GDB

	LPC43xx SGPIO Configuration
	Why not use GPDMA to transfer samples through SGPIO?

	Installing HackRF Software
	Install Using Package Managers
	FreeBSD
	Linux: Arch
	Linux: Fedora / Red Hat
	Linux: Gentoo
	Linux: Ubuntu / Debian
	OS X (10.5+): Homebrew
	OS X (10.5+): MacPorts
	Windows: Binaries

	Installing From Source
	Linux / OS X / *BSD: Building HackRF Software From Source
	Windows: Prerequisites for Cygwin, MinGW, or Visual Studio
	Windows: Installing HackRF Software via Cygwin
	Windows: Installing HackRF Software via MinGW
	Windows: Installing HackRF Software via Visual Studio 2015 x64

	HackRF Tools
	hackrf_sweep
	Usage
	Output fields

	Third-Party Software Compatible With HackRF
	Software That Has Direct Support For HackRF
	Software That Can Use Data From HackRF
	Troubleshooting Recommendations

	Sampling Rate and Baseband Filters
	Setting Gain Controls for RX
	Virtual Machines
	Opera Cake
	Frequently Asked Questions
	Why the name ‘Opera Cake’?
	When was Opera Cake first for sale?

	Hardware
	Banks
	Ports
	LEDs

	Board Addressing
	Port Configurations
	Modes of Operation
	Manual Mode
	Frequency Mode
	Time Mode

